^

Здоровье

A
A
A

Гематоэнцефалический барьер

 

Гематоэнцефалический барьер исключительно важен для обеспечения гомеостаза головного мозга, однако многие вопросы, касающиеся его формирования, все еще окончательно не выяснены. Но уже сейчас совершенно ясно, что ГЭБ представляет собой максимально выраженный по дифференцированности, сложности и плотности гистогематический барьер. Основная структурная и функциональная его единица - эндотелиальные клетки капилляров мозга.

Метаболизм мозга, как никакого другого органа, зависит от веществ, поступающих с кровотоком. Многочисленные кровеносные сосуды, обеспечивающие работу нервной системы, отличаются тем, что процесс проникновения веществ через их стенки является избирательным. Эндотелиальные клетки капилляров головного мозга соединены между собой непрерывными плотными контактами, поэтому вещества могут проходить только через сами клетки, но не между ними. К наружной поверхности капилляров прилегают клетки глии - второго компонента гематоэнцефалического барьера. В сосудистых сплетениях желудочков мозга анатомической основой барьера являются эпителиальные клетки, также плотно соединенные между собой. В настоящее время гематоэнцефалический барьер рассматривается не как анатомо-морфологическое, а как функциональное образование, способное избирательно пропускать, а в ряде случаев и доставлять к нервным клеткам с помощью активных механизмов транспорта различные молекулы. Таким образом, барьер выполняет регуляторную и защитную функции

В головном мозге есть структуры, в которых гематоэнцефалический барьер ослаблен. Это, прежде всего, гипоталамус, а также ряд образований на дне 3-го и 4-го желудочков - самое заднее поле (area postrema), субфорникальный и субкомиссуральный органы, а также шишковидное тело. Целостность ГЭБ нарушается при ишемических и воспалительных поражениях мозга.

Гематоэнцефалический барьер считается окончательно сформировавшимся, когда свойства этих клеток будут удовлетворять двум условиям. Во-первых, скорость жидкофазного эндоцитоза (пиноцитоза) в них должна быть крайне низкой. Во-вторых, между клетками должны формироваться специфические плотные контакты, для которых характерно очень высокое электрическое сопротивление. Оно достигает величин 1000-3000 Ом/см2 для капилляров мягкой мозговой оболочки и от 2000 до 8000 0м/см2 для интрапаренхимальных мозговых капилляров. Для сравнения: средняя величина трансэндотелиального электрического сопротивления капилляров скелетной мышцы составляет всего 20 Ом/см2.

Проницаемость гематоэнцефалического барьера для большинства веществ в значительной степени определяется их свойствами, а также способностью нейронов синтезировать эти вещества самостоятельно. К веществам, которые могут преодолевать этот барьер, относятся, прежде всего, кислород и углекислый газ, а также различные ионы металлов, глюкоза, незаменимые аминокислоты и жирные кислоты, необходимые для нормального функционирования мозга. Транспорт глюкозы и витаминов осуществляется с использованием переносчиков. Вместе с тем D- и L-глюкоза обладают различной скоростью проникновения через барьер - у первой она более чем в 100 раз выше. Глюкоза играет главную роль как в энергетическом обмене мозга, так и в синтезе ряда аминокислот и белков.

Ведущим фактором, определяющим функционирование гематоэнцефалического барьера, является уровень метаболизма нервных клеток.

Обеспечение нейронов необходимыми веществами осуществляется не только с помощью подходящих к ним кровеносных капилляров, но и благодаря отросткам мягкой и паутинной оболочек, по которым циркулирует цереброспинальная жидкость. Цереброспинальная жидкость находится в полости черепа, в желудочках мозга и пространствах между оболочками мозга. У человека ее объем составляет около 100-150 мл. Благодаря цереброспинальной жидкости поддерживается осмотическое равновесие нервных клеток и удаляются продукты метаболизма, токсичные для нервной ткани.

Пути обмена медиаторов и роль гематоэнцефалического барьера в обмене веществ (по: Шеперд, 1987)

Пути обмена медиаторов и роль гематоэнцефалического барьера в обмене веществ (по: Шеперд, 1987) 

Прохождение веществ через гематоэнцефалический барьер зависит не только от проницаемости для них сосудистой стенки (молекулярной массы, заряда и липофильности вещества), но также и от наличия или отсутствия системы активного транспорта.

Стереоспецифичным инсулиннезависимым транспортером глюкозы (GLUT-1), обеспечивающим перенос этого вещества через гематоэнцефалический барьер, богаты эндотелиальные клетки капилляров мозга. Активность данного транспортера может обеспечить доставку глюкозы в количестве, в 2-3 раза превышающем то, которое требуется мозгу в нормальных условиях.

Характеристика транспортных систем гематоэнцефалического барьера (по: Pardridge, Oldendorf, 1977)

Транспортируемые
соединения

Преимущественный субстрат

Кm, мМ

Vmax
нмоль/мин*г

Гексозы

Глюкоза

9

1600

Монокарбоновые
кислоты

Лактат

1,9

120

Нейтральные
аминокислоты

Фенилаланин

0,12

30

Основные
аминокислоты

Лизин

0,10

6

Амины

Холин

0,22

6

Пурины

Аденин

0,027

1

Нуклеозиды

Аденозин

0,018

0,7

У детей с нарушением функционирования этого транспортера отмечается значительное снижение уровня глюкозы в цереброспинальной жидкости и нарушения в развитии и работе мозга.

Монокарбоновые кислоты (L-лактат, ацетат, пируват), а также кетоновые тела транспортируются отдельными стереоспецифичными системами. Хотя интенсивность их транспорта ниже, чем транспорта глюкозы, они являются важным метаболическим субстратом у новорожденных и при голодании.

Транспорт холина в центральную нервную систему также опосредуется переносчиком и может регулироваться скоростью синтеза ацетилхолина в нервной системе.

Витамины мозгом не синтезируются и поставляются из крови с помощью специальных транспортных систем. Несмотря на то что эти системы обладают сравнительно низкой транспортной активностью, в нормальных условиях они могут обеспечивать транспорт необходимого для мозга количества витаминов, однако их дефицит в пище способен приводить к неврологическим расстройствам. Некоторые белки плазмы также могут проникать через гематоэнцефалический барьер. Одним из способов их проникновения является трансцитоз, опосредованный рецепторами. Именно так проникают через барьер инсулин, трансферрин, вазопрессин и инсулинподобный фактор роста. Эндотелиальные клетки капилляров мозга имеют специфические рецепторы к этим белкам и способны осуществлять эндоцитоз белок-рецепторного комплекса. Важно, что в результате последующих событий комплекс распадается, интактный белок может выделяться на противоположной стороне клетки, а рецептор вновь встраиваться в мембрану. Для поликатионных белков и лектинов способом проникновения через ГЭБ также является трансцитоз, однако он не связан с работой специфических рецепторов.

Многие нейромедиаторы, присутствующие в крови, не способны проникать через ГЭБ. Так, дофамин не обладает этой способностью, в то время как L-ДОФА проникает через ГЭБ с помощью системы транспорта нейтральных аминокислот. Кроме того, клетки капилляров содержат ферменты, метаболизирующие нейромедиаторы (холинестераза, ГАМК-трансаминаза, аминопептидазы и др.), лекарственные и токсические вещества, что обеспечивает защиту мозга не только от циркулирующих в крови нейромедиаторов, но и от токсинов.

В работе ГЭБ участвуют также белки-переносчики, осуществляющие транспорт веществ из эндотелиальных клеток капилляров головного мозга в кровь, препятствуя их проникновению в мозг, например b-гликопротеид.

В ходе онтогенеза скорость транспорта различных веществ через ГЭБ существенно изменяется. Так, скорость транспорта b-гидроксибутирата, триптофана, аденина, холина, а также глюкозы у новорожденных существенно выше, чем у взрослых. Это отражает относительно более высокую потребность развивающегося мозга в энергии и макромолекулярных субстратах.

Медицинский эксперт-редактор

Портнов Алексей Александрович

Образование: Киевский Национальный Медицинский Университет им. А.А. Богомольца, специальность - "Лечебное дело"

Другие врачи

!
Обнаружили ошибку? Выделите ее и нажмите Ctrl+Enter.




Новейшие исследования по теме Гематоэнцефалический барьер

В полной темноте мозг сообщает зрительной системе о той обстановке, которая, по его мнению, должна быть здесь. При этом мозг мобилизует собственный предыдущий жизненный и визуальный опыт.

Мы многое знаем о связи между здоровьем беременной матери и поведением, настроением, когнитивном и психологическом развитии ее ребенка после рождения.

Поделись в социальных сетях

Сообщите нам об ошибке в этом тексте:
Просто нажмите кнопку "Отправить отчет" для отправки нам уведомления. Так же Вы можете добавить комментарий.